
 For all equations, mean and median regression coefficients over the 2100 tests were 

very similar to those obtained for the full dataset.  

 The Sabbagh equation performed consistently better than the Chen equation in both 

calibration and validation (Table 1). 

 All reduced Sabbagh eqs. with > 1 independent variables performed better in both 

calibration and prediction than the Chen eq.  Even with only ∆Q and ∆E as 

independent variables one can achieve good predictive accuracy. 
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Vegetative filter strips (VFS) are widely used for 

mitigating pesticide inputs into surface waters via 

surface runoff and erosion. To simulate the effectiveness 

of VFS in reducing surface runoff volumes, eroded 

sediment and pesticide loads the model VFSMOD 

(Muñoz-Carpena and Parsons, 2014) is frequently used. 

While VFSMOD simulates infiltration and sedimentation 

mechanistically, the reduction of pesticide load by the 

VFS (∆P) is calculated with the empirical multiple 

regression equation of Sabbagh et al. (2009). This 

equation has not been widely accepted by regulatory 

authorities, because its reliability has not been 

sufficiently demonstrated yet. A major drawback is the 

small number of underlying data points (n = 47). Hence, 

evaluation against additional experimental data is 

necessary. Moreover, Chen et al. (2016) proposed an 

alternative regression equation based on 181 

experimental data points.  

 

The objective of this study was to corroborate and 

improve the predictive capability of the Sabbagh 

equation by i) broadening the underlying experimental 

database, ii) comparing the performance of the Sabbagh 

eq. with other pesticide trapping equations, iii) rigorously 

testing its predictive capability, and iv) exploring different 

methods for parameter estimation.  
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 Additional experimental VFS data were compiled from 

the available literature.  

 The enlarged dataset (n = 244) was used to recalibrate 

the Sabbagh and Chen equations, as well as a set of 

“reduced” Sabbagh eqs. with ordinary least squares 

(OLS) regression and to test a mechanistic, 

regression-free mass balance approach 

(Reichenberger et al., 2017).  

 A k-fold cross validation analysis was performed to 

assess the predictive capability of the Sabbagh and 

Chen equations and the “reduced” Sabbagh eqs.  

 Finally, a maximum-likelihood-based calibration and 

uncertainty analysis were performed for the Sabbagh 

equation using the DREAM_ZS algorithm (Vrugt, 2016) 

and two different likelihood functions: a simple log-

likelihood function (LL) assuming homoscedasticity 

(homogeneity of variance) of total model residuals, and 

a generalized likelihood function (GL) explicitly 

accounting for heteroscedasticity (Schoups and Vrugt, 

2010).  

Equations 

A) Refitted Sabbagh equation (OLS regression) 
 

∆P = -11.5142 + 0.5949 ∆Q + 0.4892 ∆E - 0.3753 ln(Fph + 1)  

+ 0.2039 %C 

 

B) Reduced Sabbagh equations (OLS) 
 
∆P = -12.6211 + 0.5763 ∆Q + 0.4862 ∆E + 0.2305 %C 

∆P = -6.2680 + 0.5728 ∆Q + 0.5071 ∆E - 0.4611 ln(Fph + 1) 

∆P = -6.8053 + 0.5456 ∆Q + 0.5063 ∆E 

∆P = 17.0577 + 0.8046 ∆Q 

 

C) Refitted Chen equation (OLS) 

 
∆P = 101- (10.441 - 0.0165 ∆Q - 0.0062 ∆E - 0.0179 %C - 1.7045 Cat 

+ 0.0184 ∆Q Cat  

- 0.0006 ∆Q ∆E)2 

 

D) Mass balance approach (Reichenberger et al., 2017) 
 

∆P/100% = min[(Vi + Kd * Ei), (∆E/100% * Ei * Kd + ∆Q/100% * Vi)]  

/ (Vi + Kd * Ei) 

 
with 

∆P relative reduction (%) of total pesticide load 

∆Q  relative reduction (%) of total water inflow Qi (L) 

∆E  relative reduction (%) of incoming sediment load Ei (kg) 

Fph  phase distribution coefficient (mass ratio) 

Kd linear sorption coefficient (L/kg) 

%C clay content of field soil (as proxy for clay content of the 

 eroded sediment; %)  

Cat for Koc > 9000 L/kg, Cat = 1; for Koc ≤ 9000 L/kg,  

 Cat = 0 

Vi incoming run-on from the source area (L) 

Fig. 4: Total predictive uncertainty intervals estimated with DREAM (left: log-likelihood function (LL); right: 

generalized likelihood function (GL) according to Schoups and Vrugt (2010)). Total predictive uncertainty 

intervals are given by the 2.5th and 97.5th percentiles of the posterior distribution of simulated ∆P for each 

data point. Results are given for the run with the highest likelihood of the best parameter set out of ten trials. 

Fig. 1: Schematic representation of a VFS.  

Source: http://abe.ufl.edu/carpena/vfsmod/ 

Materials and Methods 

 This study confirmed the suitability of the Sabbagh equation for modelling pesticide 

trapping in VFS. The new parameter set obtained with OLS regression has been 

corroborated by both the cross-validation analysis and the DREAM_ZS simulations 

and can therefore be recommended for use in regulatory modelling with VFSMOD. 

 Of course, once the experimental database is extended with new studies, refitting the 

Sabbagh or any other regression equation will again yield different coefficients. 

Consequently, fitted/predicted ∆P values for the same data points will change, which is 

undesirable from a regulatory point of view. However, the larger the underlying 

database gets, the smaller the changes resulting from including additional data will be.  

 In contrast to the empirical Sabbagh and Chen eqs., the mass balance approach of 

Reichenberger et al. (2017) does not need calibration. Hence, it will always yield the 

same results for a given experimental data point provided that the same Kd value is 

used. However, this also means that predicted ∆P values do not improve when new 

data become available.  

 Because of its advantage of being mechanistic and its overall good predictive 

performance, the mass balance approach can be recommended as a viable alternative 

to the Sabbagh equation for regulatory modelling. There is also scope for 

improvement: Possibly further relevant processes, such as sorption of dissolved 

pesticide to soil or plant material in the VFS, can be included in the mass balance 

approach in a simple, yet process-based manner.  

Calibration and uncertainty analysis with DREAM_ZS 

Fig. 2: Measured ∆P vs. ∆P fitted with the Sabbagh and 

Chen eqs. (OLS) and ∆P predicted with the mass balance 

approach for the full test data set (n = 244) 

Fig. 3: Measured ∆P vs. ∆P fitted with the full and the four 

reduced Sabbagh equations (OLS) (n = 244) 

 Despite heteroscedasticity, the Sabbagh equation 

fitted the whole dataset slightly better  

(Coefficient of Determination R2 = 0.819) than the 

Chen equation (R2 = 0.793) and was less outlier-

prone (cf. Fig. 2).  

 For the reduced Sabbagh eqs. (Fig. 3) with > 1 

independent variables, R2 lay between the values 

for the full Sabbagh and the Chen equation. 

 The mass balance approach performed slightly 

worse (Nash-Sutcliffe Efficiency NSE = 0.741) 

than the refitted Sabbagh and Chen equations  

(cf. Fig. 2).  

 However, all three equations performed 

acceptably well and significantly better than the 

original Sabbagh and Chen equations (NSE = 

0.53 and 0.56, respectively).  

 The DREAM_ZS simulations with the LL option corroborated the Sabbagh parameter 

values obtained with OLS. 

 The simulations with the GL option yielded a slightly worse fit (R2 = 0.815) than LL and 

OLS and showed signs of nonuniqueness (posterior correlation coefficient between 

heteroscedasticity parameters 0 and 1 was r = -0.998).  

 Predictive uncertainty intervals tended to be larger for GL than for LL, notably for small 

measured ∆P and negative outliers (Fig. 4). However, there were also some data 

points for which GL yielded smaller uncertainty intervals than LL. 

 Potential explanation: The linear error model used in GL is not applicable to ∆P: The 

measurement error of ∆P should be smallest at the extremes of ∆P and largest in the 

middle range.  Better not account for heteroscedasticity than do it wrongly.  

Table 1: Performance indicators averaged over the 2100 1) individual cross-validation tests 

Indicator Sabbagh equation Chen equation difference Sabbagh - Chen 

  mean Median mean median mean median 
              

______________________________     Calibration     ______________________________ 

Pearson r2 0.820 0.820 0.792 2) 0.792 2) 0.027 0.028 

adjusted r2 0.816 0.816 0.786 2) 0.785 2) 0.030 0.030 
              

______________________________     Prediction     ______________________________ 

Q2  3) 0.806 0.813 0.766 4) 0.777 4) 0.040 0.032 

Pearson r2 0.799 0.815 0.771 4) 0.788 4) 0.029 0.024 

RMSEP 10.286 10.307 11.212 4) 11.289 4) -0.926 -0.851 
1) 6 different levels of k (k = 2, 4, 6, 8, 10, 12); 50 iterations per level of k  
2) These measures were calculated during the linear regression and therefore refer to the transformed variable (101 - ∆P)0.5 
3) Predictive squared correlation coefficient (Consonni et al., 2010) 
4) The predictive accuracy indicators for the Chen equation were calculated after back-transforming (101 - ∆P)0.5 to ∆P. 


