Modelling real vegetative filter strip (VFS) experiments with a new VFSMOD version – calibration and uncertainty analysis with DREAM-ZS B worldwide registration

Stefan Reichenberger¹, Robin Sur², Carolin Kley², Stephan Sittig¹, Sebastian Multsch¹

¹ knoell Germany GmbH, 68163 Mannheim, Germany (contact: sreichenberger@knoell.com) ² Bayer AG, 40789 Monheim, Germany

Introduction

- Vegetative filter strips (VFS) are the most widely implemented mitigation measure to reduce transfer of pesticides and other pollutants to surface waters via surface runoff and erosion.
- To reliably model VFS effectiveness in a risk assessment context, an event-based model is needed. The most commonly used dynamic, event-based model for this purpose is VFSMOD (Muñoz-Carpena and Parsons, 2014; Muñoz-Carpena et al., 1999).
- While VFSMOD simulates reduction of total inflow (ΔQ) and incoming eroded sediment load (ΔE) reduction of mechanistically, the reduction of pesticide load by the VFS (ΔP) is calculated with alternative process-based equations, including empirical regressions and a mechanistic mass balance approach.

Fig. 1: Schematic representation of a VFS. http://abe.ufl.edu/carpena/vfsmod/

Selected events / studies

Table 1: VFS field experiments selected for the simulation study

knoell

Study	country	site	event dates	surface runoff generation	nb hydrol. events	run-on / total inflow (%)	compounds	availability of hydrographs
Arora et al. (1996)	USA	Ames, Iowa ¹⁾	06/1993	natural rainfall	2	86-93	atrazine, cyanazine, metolachlor	run-on
Boyd et al. (2003)	USA	Ames, Iowa ¹⁾	06/1999	natural rainfall	2	74-90	acetochlor, atrazine, chlorpyrifos	rainfall duration, run- on, outflow
Réal (1997)	FR	Bignan, Bretagne ²⁾	12/1994 - 02/1995	natural rainfall	6 ³⁾	9-33	diflufenican, isoproturon	none
White et al. (2016)	USA	St. Paul <i>,</i> Minnesota	06/2015 - 07/2015	Simulated run-on + simulated rainfall on VFS	5	27-46	tebuconazole, trichlorfon eq.	rainfall, run-on, outflow

¹⁾ same site, same experimental device

Pesticide trapping options in VFSMOD

A) Original Sabbagh equation (Sabbagh et al., 2009)

 $\Delta P = 24.79 + 0.54 \Delta Q + 0.52 \Delta E - 2.42 \ln(Fph + 1) - 0.89 \%C$

- B) Revised Sabbagh equation (Reichenberger et al., 2019)
- $\Delta P = -11.5142 + 0.5949 \Delta Q + 0.4892 \Delta E 0.3753 \ln(Fph + 1) + 0.2039 \% C$

C) Mass balance approach (Reichenberger et al., 2019)

 $\Delta P/100\% = min[(Vi + Kd * Ei), (\Delta E/100\% * Ei * Kd + \Delta Q/100\% * Vi)] /$ (Vi + Kd * Ei)

with

- relative reduction (%) of total pesticide load $\Delta \mathsf{P}$
- relative reduction (%) of total water inflow Qi (L) $\Delta \mathsf{Q}$
- relative reduction (%) of incoming sediment load Ei (kg) $\Delta \mathsf{E}$
- phase distribution coefficient (mass ratio) Fph
- linear sorption coefficient (L/kg) Kd
- %C clay content of field soil (as proxy for clay content of the eroded sediment; %)
- Vi incoming run-on from the source area (L)

Preliminary study

- Reichenberger et al. (2018) simulated 4 VFS studies (cf. Tab. 1) with 16 hydrological events
- Conclusions:
 - > The SWAN-VFSMOD (Brown et al., 2012) parameterization of saturated hydraulic conductivity seems too conservative (too little infiltration), while the parameterization of sediment filtration seems too optimistic (too much sediment trapping).

Results and Discussion

- Overall a good match of measured ΔQ and ΔE could be achieved.
- Only a few parameters could be well constrained (cf. Fig. 2) \rightarrow equifinality
- For events with ΔQ close to 0 or 100 % parameter estimation is difficult (not enough information in data).
- For all studies, the sWT option yielded slightly or moderately better fits than the noWT option. However, sWT also had more equifinality.
- Activating the feedback of sedimentation on infiltration (ICO = 1) did on average not improve the calibration, but did influence the posterior distributions --> further investigations needed.
- Goodness-of-fit measure:
 - > on average, NSE_w performed better than **SSIWR**
 - \succ a = 0.6, b = 0.4 was a good compromise
- Using available outflow hydrographs for calibration did not improve the calibration of ΔQ and ΔE , but helped avoid best parameter sets which are "right for the wrong reason" (cf. Fig. 3)
- Results for ΔP are in line with previous observations (Reichenberger et al., 2018): The new Sabbagh equation yielded the best match of ΔP , while the mass balance approach was the most conservative of the three trapping equations (cf. Fig. 4).

6.0E-04

²⁾ run-on, sediment and pesticide inputs into VFS estimated as outflow from control plots ³⁾ One of the orginally 7 events was excluded from the DREAM calibration because of an unrealistically low measured ΔE (23 %).

Prior distributions

Table 2: VFSMOD parameters included in the calibration with DREAM, and prior distributions

parameter	description	unit	distribution type	min	max	VFSMOD option
SS	spacing of the filter media elements	cm	uniform	0.75	4	both
VN	filter media (grass) Manning's n	s.cm ^{-1/3}	uniform	0.005	0.02	both
Н	filter media height	cm	log-uniform	2	40	both
VN2	bare surface Manning's n for sediment-inundated area	s.m ^{-1/3}	uniform	0.01	0.06	both
RNA	Manning's roughness for each segment	s.m ^{-1/3}	uniform	0.06	0.74	both
COARSE	fraction of incoming sediment particles with diameter > 0.0037 cm	fraction	uniform	0	< 0.5	both
POR	porosity of deposited sediment	fraction	uniform	0.35	0.65	both
DP	median sediment particle diameter	cm	uniform	0.001	< 0.0037	both
VKS	saturated vertical hydraulic conductivity	m s⁻¹	log-uniform	1.00E-07	1.00E-04	both
SAV	Green-Ampt's average suction at wetting front	m	log-uniform	0.01	1	noWT
OS	saturated soil-water content	m³ m-³	uniform	0.35	0.65	both
01	initial soil water content	m³ m-³	uniform	0.1	0.6	noWT
SM	maximum surface storage	m	uniform	0	0.005	both
SCHK	relative distance from the upper VFS edge where ponding check is made	fraction	uniform	0	1	both
WTD	water table depth	m	uniform	0	3	sWT
theta_r	van Genuchten residual water content	m³ m-³	uniform	0	0.1	sWT
VG_alpha	van Genuchten alpha	m ⁻¹	uniform	0.5	50	sWT
VG_N	van Genuchten N		uniform	1.001	2	sWT
VG_M	van Genuchten M		n.a. ¹⁾			sWT
RHV	ratio of horizontal to vertical saturated conductivity	fraction	log-uniform	0.5	2	sWT

Biases in predicted ΔQ and ΔE propagate differently to ΔP predicted with the different trapping equations.

Objectives

- The objectives of this follow-up study were to
- (1) calibrate hydrology and sediment trapping in VFSMOD for the 4 VFS studies
- (2) compare the performance of the three pesticide trapping equations applied predictively to the calibrated VFSMOD runs
- (3) elucidate which trapping equation performs better in which situation (e.g. soil type, Kd, characteristics of runoff/erosion event),
- (4) help improve parameterization methodologies for the infiltration and sediment filtration modules for regulatory VFS scenarios

Materials and Methods

- For each VFS study, a calibration and uncertainty analysis was performed with the DREAM-ZS algorithm (Vrugt, 2016).
- A Python tool for automated VFSMOD simulations was coupled with the DREAM-ZS implementation in MATLAB.
- Target variables: ΔQ , ΔE , VFS outflow hydrographs (where available)
- Hydrologic events of the same study were calibrated simultaneously
- Four different VFSMOD settings:
- > no water table (noWT, 14 parameters) / shallow water table (Muñoz-Carpena et al., 2018; sWT, 17 parameters)
- ICO switch (feedback of sedimentation on infiltration or not): 0 or 1

Fig. 2: Posterior parameter distributions obtained with DREAM-ZS for the White et al. (2016) study (90% confidence intervals, with best estimators as red markers), dynamics of convergence, and measured vs. simulated ΔQ and ΔE . VFSMOD settings: sWT, ICO = 0. DREAM-ZS settings: a = b = 0.25; weight for each outflow hydrograph = 0.1

BAYER

ED

¹⁾ VG_M was always calculated as VG_M = 1 - 1/VG_N

Fig. 4: Measured vs. simulated ΔQ , ΔE and ΔP (VFSMOD settings: sWT, ICO = 0; DREAM-ZS settings: a = 0.6, b = 0.4). Simulated ΔQ and ΔE correspond to the best VFSMOD parameter sets for each study found with DREAM-ZS. ΔP was predicted with the 3 trapping equations from the simulated ΔQ and ΔE values . NSE = 0.86 (Sabbagh new), 0.78 (Sabbagh old), and 0.70 (mass balance).

- Goodness-of-fit measure:
 - \blacktriangleright weighted Nash-Sutcliffe Efficiency (NSE_w = a * NSE_ Δ Q + b * NSE_ Δ E) sum of squared inversely weighted residuals (SSIWR)
- To limit the effect of the priors on the posterior distributions, flat, non-informative priors were used (cf. Table 2).
- After the calibration the three pesticide trapping equations were applied predictively to the best parameter sets.

References

- Muñoz-Carpena R, Parsons JE (2014). VFSMOD-W Vegetative Filter Strips Modelling System. Version 6.x. http://abe.ufl.edu/carpena/files/pdf/software/vfsmod/VFSMOD_UsersManual_v6.pdf
- Muñoz-Carpena R et al. (1999). Journal of Hydrology 214, 111-129
- Muñoz-Carpena R et al. (2018). Hydrol. Earth Syst. Sci. 22, 53–70
- Sabbagh GJ et al. (2009). J. Environ. Qual. 38, 762–771
- Reichenberger S et al. (2018). 9th European Modelling Workshop, Copenhagen, DK; oral pres.
- Reichenberger S et al. (2019). STOTEN 647, 534–550
- Brown C et al. (2012). Definition of VFS scenarios for Europe. Final Report. Univ. York, UK. 71 p.
- Vrugt JA (2016). Environ. Model. Softw. 75, 273–316.
- Arora K et al. (1996). Trans. ASAE 39, 2155–2162.
- Boyd PM et al. (2003). Trans. ASAE 46, 675.
- Réal B (1997). I.T.C.F. AGENCES DE L'EAU. 21 p.
- White JW et al. (2016). Bayer CropScience, Research Triangle Park, NC, USA 27709. 172 p

Fig. 3: Measured and simulated (sWT, ICO = 0) VFS outflow for an event from White et al. (2016). The blue and green curves correspond to the best parameter sets after calibration with and without outflow hydrographs, respectively.

Conclusions

- The relative reduction of total inflow (ΔQ) and incoming sediment load (ΔE) in VFSMOD could be successfully calibrated with DREAM-ZS.
- With regard to pesticide trapping (ΔP):
 - The revised Sabbagh equation performed best
 - The mechanistic mass balance equation provided conservative estimates
 - The original Sabbagh equation still performed acceptably well

Next steps

- Reduce the number of parameters to be estimated (e.g. fix the ponding check point SCHK and the anisotropy ratio RHV) to decrease equifinality
- Use the gained knowledge to propose improvements for the parameterization of vegetated filter strip scenarios